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Abstract

An original method for the identification of Reduced Models (RM) of nonlinear diffusive thermal systems is pro-

posed in this numerical study. This method derives from the Modal Identification Method developed for linear systems

in previous works. Starting from a Detailed Model (DM) under matrix form, a RM structure is defined. RM�s matrices

are then identified through the minimization of a squared residues functional built with the discrepancy between system

responses (DM outputs in this study) on the one hand and RM outputs on the other hand, when a specific input signal

is applied. A tridimensional example with thermal conductivity depending linearly on temperature illustrates the

method. In comparison with DM, computing time is drastically reduced (division by a factor greater than 1000 in

the proposed example) without significant loss of accuracy.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Both natural and industrial thermal systems fre-

quently exhibit nonlinear behaviour, because of thermo-

dependant physical properties, presence of radiation or

velocity–temperature coupling in the case of natural

convection. When tridimensional aspects cannot be ig-

nored, classical numerical methods based on a spatial

discretization of the studied domain (finite elements, fi-

nite volumes, finite differences, etc.), induce large sys-

tems of nonlinear equations whose resolution requires

huge computing time. Although computers are more
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and more powerful, studied systems become more com-

plex and computing time reduction remains a crucial is-

sue, especially for control command processes for

example.

Model reduction methods provide interesting an-

swers, as they allow to replace a large size model, also

called Detailed Model (DM), whose order N corre-

sponds to the number of discretization nodes, by a small

size model or Reduced Model (RM) whose order is

n� N. RMs are made up of small systems of equations;

they simulate the system thermal behaviour for the

whole domain or a part of it with limited loss of accu-

racy and very short computing time.

While numerous reduction methods exist for linear

systems, including modal methods [1–4], internal bal-

anced representation method [5], Eitelberg method

[4,6], nodal topology reduction method [7], modal base

reconstruction methods as the modal amalgam method

[8] and the Modal Identification Method [9], the number
ed.
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Nomenclature

Latin characters

A, B, C, F, G, H, M, T, W, X, Y, Z matrices and

vectors

Cp specific heat, Jkg�1K�1

Jred criterion to minimise for the RM identi-

fication

DM, RM Detailed Model, Reduced Model

dimz(k) = k(k + 1)/2, k integer

N DM order i.e. number of discretization

nodes

n RM order

nt number of time steps for temperature data

used for RM identification

pv volumetric heat source distribution, Wm�3

q output vector dimension

t time, s

U thermal input

Greek symbols

k thermal conductivity, Wm�1K�1

q density, kgm�3

X,W matrix and vector

Superscript

� derivation with respect to time
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of reduction methods for nonlinear systems is limited.

Among these techniques, one should mention the Karh-

unen–Loève–Galerkin method [10], based on statistical

considerations and also known as proper orthogonal

decomposition (POD). This method has been applied

to conduction problems [11] as well as to natural convec-

tion problems [12]. In the ‘‘branch modes method’’, the

model reduction is performed in a branch base solution

of a branch problem defined from thermophysical prop-

erties mean values. This technique has been applied to a

heating wire [13]. Another method consists in operating

the reduction in the Lanczos vectors base [14]. In these

three methods, governing equations have to be entirely

known, including thermophysical parameters.

In the case of nonlinear diffusive thermal systems, a

new reduction method is proposed in this paper. It is

in fact a low order model identification method. Our

approach requires the knowledge of the equations

structure and temperature evolutions in locations of

interest, constituting responses to a specific input signal.

If these temperature are obtained by measurements, the

method can be used for experimental modelling and val-

ues of equations parameters may be unknown. How-

ever, in the present study, temperature data are

generated through a DM (governing equations as well

as their parameters are known in that case).
2. Methodology summary

The proposed method derives from the Modal Iden-

tification Method [9,15] developed for linear systems.

Starting from DM structure, RM structure is defined.

Elements (matrices) of this RM structure have then to

be identified. The identification principle is based on

the minimization of a squared residues functional built

with the discrepancy between system responses (DM
outputs in this study) on the one hand and RM outputs

on the other hand, when a specific input signal is ap-

plied. One should note the existence of reduction meth-

ods for nonlinear systems using such an optimization

approach [16]. In fact RM acts as a transfer function

linking a single thermal input to considered outputs.

Up to now, the method is therefore limited to mono-in-

put/multi-outputs systems. Thanks to the adopted state

space representation, it is independent of geometry and

can be applied to multidimensional systems. Reduced

Models work in both transient and steady regimes.
3. Justification of RM structure

3.1. Hypothesis

Let us assume a system composed of a purely diffu-

sive medium whose thermal conductivity varies with

temperature. Density and specific heat are supposed to

be invariant with temperature. Transient energy equa-

tion governing heat transfer through the domain is

written:

qðrÞCpðrÞ
oT
ot

ðr; tÞ ¼ divðkðr; T Þ grad
!

T ðr; tÞÞ þ pvðr; tÞ

ð1Þ

After a spatial discretization, Eq. (1) and associated

boundary conditions can be written under a discrete

matrix form:

_T ðtÞ ¼ AðT ÞT ðtÞ þ BUðtÞ ð2Þ

where T(t) (dim. N) is the vector containing tempera-

tures of all discretization nodes, _T ðtÞ is the derivative

of vector T with respect to time, matrix A (dim. N,N)

is the state matrix depending on temperature because

of the thermal conductivity, U(t) is a thermal input (a
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heat flux density or an internal heat source for instance)

and vector B (dim. N) is the command or input vector

linking nodes to U(t).

Note: although Eq. (2) can be written for a vector U

including several thermal inputs, the presented reduction

method is limited to only one time-varying excitation.

The others are assumed to be constant (here equal to

zero).

A matrix C (dim. q,N) with q 6 N, called observa-

tion or output matrix, can be used to select a part of

the whole temperature field T. This selection is con-

tained in output vector Y(t) (dim. q), then written:

Y ðtÞ ¼ CT ðtÞ ð3Þ

Let us assume that thermal conductivity can be writ-

ten as the sum of two terms:

kðr; T Þ ¼ k0ðrÞ þ f ðr; T Þ ð4Þ

where f is a function of position r and local temperature

T and k0(r) is a conductivity reference distribution.

By separating linear and nonlinear terms in Eq. (2)

according to Eq. (4) and by using Eq. (3), one can write

a DM known as ‘‘State Space Representation’’, linking

Y(t) to U(t):

_T ðtÞ ¼ AT ðtÞ þ BUðtÞ þWðT ðtÞÞ
Y ðtÞ ¼ CT ðtÞ

(
ð5a;bÞ

where matrix A (dim. N,N) is now the state matrix of a

linear system with same geometry but constant thermal

conductivity field k0(r), W(T(t)) (dim. N) is the vector

gathering nonlinearities, hence corresponding to term

f(r,T) of Eq. (1). For each node i, component Wi of vec-

tor W is the sum of nonlinear contributions of node i

with its neighbouring nodes.

It should be noted that a DM can always be written

under the form of Eqs. (5a,b), whatever the discretiza-

tion method (finite elements, finite volumes, finite

differences, . . .).
In the following, it is assumed that thermal conduc-

tivity is linearly variable with temperature, i.e. Eq. (4)

can be written:

kðr; T Þ ¼ k0ðrÞ þ bðrÞT ð6Þ

Remark: Although the method is developed for linear

variation of thermal conductivity with temperature, one

should note that analogous developments could be writ-

ten in the more general hypothesis of a polynomial law,

as it will be shown in Section 3.2.
3.2. Formulation of RM equations

Let us imagine that we solve the eigenvalue problem

associated with matrix A of Eq. (5a). Let us call F the

diagonal matrix whose components are the N eigen-
values of A, and M (dim. N,N) the matrix whose

columns are eigenvectors of A.

Transformation T(t) = MX(t) injected in Eq. (5a,b)

leads to:

_X ðtÞ ¼ FX ðtÞ þ GUðtÞ þM�1WðMX ðtÞÞ
Y ðtÞ ¼ HX ðtÞ

(
ð7a;bÞ

with:

F ¼ M�1AM

G ¼ M�1B

H ¼ CM

8><>: ð8a;b;cÞ

Components of new state vector X(t) are states Xi(t),

i 2 h1,Ni, which are coupled through vector of nonline-

arities W. It will now be shown how to rewrite vector

W(MX(t)) as:

WðT ðtÞÞ ¼ WðMX ðtÞÞ ¼ LZðX ðtÞÞ ð9Þ

where vector Z(X(t)) depends only on couplings between

states Xi(t) and contains, according to thermal conduc-

tivity law (6), products Xi(t)Xj(t):

ZðX ðtÞÞ ¼ X 2
1ðtÞ X 1ðtÞX 2ðtÞ X 1ðtÞX 3ðtÞ � � � X 1ðtÞXN ðtÞ

�
X 2

2ðtÞ X 2ðtÞX 3ðtÞ � � � X 2ðtÞXN ðtÞ � � �

� � � X 2
N�1ðtÞ XN�1ðtÞXN ðtÞ X 2

N ðtÞ
�T ð10Þ

Dimension of vector Z(X(t)) is therefore dimz(N) =

N(N + 1)/2. Dimension of matrix L is (N,dimz(N)).

To illustrate following developments with brevity and

clarity, a 3D cartesian problem is considered, with q and

Cp independent of position r, as well as k0 and b in Eq.

(6). Nevertheless no generality is lost concerning other

systems of coordinates and cases involving q(r), Cp(r),

k0(r) and b(r).
In that case, the transient energy equation is written:

qCp
oT
ot

ðr; tÞ ¼ divðkðT Þ grad!
T ðr; tÞÞ ð11Þ

The term divðkðT Þ grad!
T ðr; tÞÞ of Eq. (11) can be

written:

divðkðT Þ grad!
T ðr; tÞÞ ¼ o

ox
kðT Þ oT

ox

� �
þ o

oy
kðT Þ oT

oy

� �
þ o

oz
kðT Þ oT

oz

� �
ð12Þ

The following developments are based on the Finite Vol-

umes Method, again without loss of generality concern-

ing other discretization methods. Let us consider a

control volume around a point P, using the following

notations: W, E, N, S, O and B indicate points located

respectively to the West, East, North, South, top (tOp)

and bottom (Bottom) of point P and w, e, n, s, o and

b indicate interfaces between the considered control
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Fig. 1. Control volume.
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volume and neighbouring control volumes. Fig. 1 illus-

trates this configuration.

Integration with respect to space, of the first term of

the right part of Eq. (12), gives:Z z¼o

z¼b

Z y¼n

y¼s

Z x¼e

x¼w

o

ox
kðT Þ oT

ox

� �� �
dxdy dz

¼
Z z¼o

z¼b

Z y¼n

y¼s
kðT Þ oT

ox

� �
x¼e

� kðT Þ oT
ox

� �
x¼w

� �
dy dz

ð13Þ

Let us introduce in Eq. (13) the thermal conductivity

law defined by Eq. (6):Z z¼o

z¼b

Z y¼n

y¼s

Z x¼e

x¼w

o

ox
kðT Þ oT

ox

� �� �
dxdy dz

¼ k0

Z z¼o

z¼b

Z y¼n

y¼s

oT
ox

� �
x¼e

� oT
ox

� �
x¼w

� �
dy dz

þ b
Z z¼o

z¼b

Z y¼n

y¼s
T
oT
ox

� �
x¼e

� T
oT
ox

� �
x¼w

� �
dy dz

ð14Þ

which can also be written:Z z¼o

z¼b

Z y¼n

y¼s

Z x¼e

x¼w

o

ox
kðT Þ oT

ox

� �� �
dxdy dz

¼ k0

Z z¼o

z¼b

Z y¼n

y¼s

oT
ox

� �
x¼e

� oT
ox

� �
x¼w

� �
dy dz

þ b
Z z¼o

z¼b

Z y¼n

y¼s

1

2

oðT 2Þ
ox

� �
x¼e

�

� 1

2

oðT 2Þ
ox

� �
x¼w

�
dy dz ð15Þ

In a classic way, it is assumed that quantities (heat

flux densities) k0 oT
ox

� �
x¼e

and b
2

oðT 2Þ
ox

� �
x¼e

prevail on the

entire interface e whose area is DyDz [17].
As well, it is assumed that quantities (heat flux densi-

ties) ðk0 oT
ox Þx¼w and ðb

2

oðT 2Þ
ox Þx¼w prevail on the entire inter-

face w whose area is DyDz.
The approximation of heat flux densities is made as

follows:

k0
oT
ox

� �
x¼e

¼ k0
oT
ox

� �
x¼e

� k0
T E � T P

dxe

� �
ð16Þ

b
2

oðT 2Þ
ox

� �
x¼e

¼ b
2

oðT 2Þ
ox

� �
x¼e

� b
2

T 2
E � T 2

P

dxe

� �
ð17Þ

k0
oT
ox

� �
x¼w

¼ k0
oT
ox

� �
x¼w

� k0
T P � TW

dxw

� �
ð18Þ

b
2

oðT 2Þ
ox

� �
x¼w

¼ b
2

oðT 2Þ
ox

� �
x¼w

� b
2

T 2
P � T 2

W

dxw

� �
ð19Þ

By injecting Eqs. (16)–(19) into Eq. (15), we get:Z z¼0

z¼b

Z y¼n

y¼s

Z x¼e

x¼w

o

ox
kðT Þ oT

ox

� �� �
dxdy dz

� k0
T E � T P

dxe

� �
� T P � TW

dxw

� �	 

DyDz

þ 1

2
b

T 2
E � T 2

P

dxe

� �
� T 2

P � T 2
W

dxw

� �	 

DyDz ð20Þ

This operation is realised for each internal node in

the three directions. Expressions in the first term of

Eq. (20) enter in the composition of matrix A of Eq.

(5a). Expressions in the second term of Eq. (20) enter

in the composition of vector W. It can be seen that

squares of temperatures at discretization nodes appear

in nonlinear terms components of vectorW(T). A similar

treatment for boundary conditions allows to complete

matrix A and vector W, and to create matrix B. Diago-

nalization of matrix A gives matrices F and M.

Transformation T(t) = MX(t) allows to write, for

each square of temperature Tk at node k:

T 2
k ¼

XN
i¼1

MkiX i

 ! XN
j¼1

MkjX j

 !

¼
XN
i¼1

XN
j¼1

ðMkiMkjX iX jÞ ð21Þ

Vector W is therefore written as Eq. (9) with the def-

inition of vector Z (Eq. (10)). Products MkiMkj enter in

the composition of matrix L.

The new model of the system is now:

_X ðtÞ ¼ FX ðtÞ þ GUðtÞ þ XZðX ðtÞÞ

Y ðtÞ ¼ HX ðtÞ

(
ð22a;bÞ

where matrices F, G,H are defined by relations ((8a)–(c))

and matrix X (N,dimz(N)) is X = M�1L.
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At this time, it is important to note the following

remarks:

1. Eq. (22a,b) constitute a DM in modal form, with the

nonlinear term XZ(X(t)).
2. A modal formulation of DM is interesting in the case

of linear systems (X = 0) because it allows a complete

decoupling of states Xi. On the contrary, such a

modal form is very penalising for nonlinear cases,

because matrix X is (N,dimz(N)) with dimz(N) =

N(N + 1)/2 and can be therefore very large if N is

important. For example, if N = 1000, X is (1000,

500500). The formulation (22) becomes interesting

when associated with a reduced state vector X whose

dimension is n� N.

3. In a way similar to the Modal Identification Method

developed for linear systems [9,15], we propose in the

following a Reduced Model formulation based on

Eq. (22a,b) with reduced matrices F, G, X and H to

be identified. Therefore the eigenvalue problem asso-

ciated with matrix A has not to be solved: matrices

F and M are not computed, as well as matrices L

and X.
4. A formulation analogous to Eq. (22a,b) can be

obtained in the more general case of thermal conduc-

tivity depending on temperature according to a poly-

nomial law. Components of vector W are not only

composed of squares of temperatures at discretiza-

tion nodes, but also of all powers of temperatures

up to d + 1 with d the greatest power of the polyno-

mial function. By applying T = MX, one makes

appear XiXj products but also XiXjXk and XiXjXkXl

ones, etc. up to ‘‘(d + 1)uples’’ products. For a given

order N, the new vector Z(X) is larger, as well as

associated matrix X.
5. Moreover it seems possible to extend the method to

the case of thermal capacity varying with tempera-

ture. A nonlinear unsteady term appears that can

be included in vector W, which is written WðT ; _T Þ.
For each node P of the spatial discretization, the

unsteady term involves products of powers of tem-

perature TP with time derivative _T P. For example, if

thermal capacity depends linearly on temperature,

the term T P
_T P appears. Transformation T = MX

leads to:

T P
_T P ¼

XN
i¼1

MkiX i

 ! XN
j¼1

Mkj
_X j

 !

¼
XN
i¼1

XN
j¼1

ðMkiMkjX i
_X jÞ ð23Þ

A formulation similar to Eq. (22a,b) can then be

obtained, with vector Z becoming ZðX ; _X Þ in which

are included the N2 products X i
_X j.
Let us now consider a partition of states Xi in Eq.

(22a,b): a part XD containing n (<N) dominant states

and a part XND gathering the N � n nondominant

states:
_XDðtÞ
_XNDðtÞ

" #
¼

FD 0

0 F ND

	 

XDðstÞ
XNDðtÞ

	 

þ

GD

GND

	 

UðtÞ

þ
XD

XND

	 

Z

XDðtÞ
XNDðtÞ

	 
� �
Y ðtÞ ¼ HD HND½ �

XDðtÞ
XNDðtÞ

	 


8>>>>>>>>><>>>>>>>>>:
ð24a;bÞ

Keeping only the n dominant states gives:

_XDðtÞ ¼ F DXDðtÞ þ GDUðtÞ þ XDZDðXDðtÞÞbY ðtÞ ¼ HDXDðtÞ

(
ð25a;bÞ

where vector bY ðtÞ approaches vector Y(t) (the one com-

puted using Eq. (5a,b) or (22a,b)), XD(t) is a reduced

state vector whose dimension is n (we wish n � N).

FD(n,n) is diagonal. XD(n,dimz(n)), HD(q,n) and GD(n)

are the associated reduced matrices and vector. The vec-

tor ZD(XD(t)) whose dimension is dimz(n) = n(n + 1)/2,

is composed of products XDi(t)XDj(t). In the following,

subscript D is omitted to simplify notations. Hence

RM is written:

_X ðtÞ ¼ FX ðtÞ þ GUðtÞ þ XZðX ðtÞÞbY ðtÞ ¼ HX ðtÞ

(
ð26a;bÞ

with

ZðX ðtÞÞ ¼ X 2
1ðtÞ X 1ðtÞX 2ðtÞ X 1ðtÞX 3ðtÞ � � � X 1ðtÞXnðtÞ

�
X 2

2ðtÞ X 2ðtÞX 3ðtÞ � � � X 2ðtÞXnðtÞ � � � � � �

X 2
n�1ðtÞ Xn�1ðtÞXnðtÞ X 2

nðtÞ
�T ð27Þ
In many reduction methods, states are computed and

a selection of some dominant states is made using differ-

ent techniques: see for example, the case of modal meth-

ods where the selection of eigenmodes can be made by

simple truncation [1] (the eigenvalues corresponding to

the large time constants are kept) or by considering en-

ergy criteria [2,3] (modes carrying the maximum of en-

ergy according to the chosen criterion are kept).

In the present paper, modes are not computed by

solving an eigenvalue problem and hence modes are

not selected as in modal methods [1–4], for example.

Components of matrices, including the n dominant

eigenvalues (matrix F) and eigenvectors (matrix H), are

identified through a minimization procedure explained

in the following Section 4 along with the choice of the

order n.
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The following transformation is applied:

X 0ðtÞ ¼ diagðG1; . . . ;GnÞX ðtÞ ð28Þ

where diag(G1, . . . ,Gn) is the diagonal matrix whose

components are the Gi, i = 1, . . . ,n. We get:

_X
0ðtÞ ¼ FX 0ðtÞ þ 1UðtÞ þ X0ZðX 0ðtÞÞbY ðtÞ ¼ H 0X 0ðtÞ

(
ð29a;bÞ

where 1 is the vector whose dimension is n and all com-

ponents are equal to 1, X 0 = [diag(G1, . . . ,Gn)]
�1

Xdiag(Z(G)) with Z(G) (dimension dimz(n)) gathering

products GiGj, and H 0 = Hdiag(G1, . . . ,Gn).

By omitting prime symbol to lighten notations, the

final form of the Reduced Model is obtained:

_X ðtÞ ¼ FX ðtÞ þ 1UðtÞ þ XZðX ðtÞÞbY ðtÞ ¼ HX ðtÞ

(
ð30a;bÞ
where:

• X(t) (dim. n) is a low dimensional state vector

(n � N), _X ðtÞ its derivative with respect to time.

States Xi(t) are coupled through nonlinearities.

• Z(X(t)) (dim. dimz(n) = n(n + 1)/2) is the vector of

nonlinearities gathering products Xi(t)Xj(t).

• U(t) is the thermal input.

• bY ðtÞ (dim. q) is the approached output vector (such

as bY ðtÞ � Y ðtÞ).
• F (dim. n,n) is a diagonal matrix containing n charac-

teristic ‘‘eigenvalues’’ to be identified.

• X (dim. n,dimz(n)) is the matrix quantifying the con-

tribution of components of nonlinear vector Z(X(t))

in each one of the n coupled equations. Components

of X have to be identified.

• H (dim. q,n) is a reduced output matrix which has to

be identified.
4. Reduced Model identification algorithm

The identification of components of matrices F, X
and H is realised through the minimization of a squared

residues functional Jred built with the discrepancy be-

tween responses of the system (in this study, outputs

of DM defined by Eq. (5a,b) on the one hand and out-

puts of RM defined by Eq. (30a,b) on the other hand,

when a specific input signal is applied:

J redðn; F ;X;HÞ ¼
Xq
i¼1

Xnt
j¼0

ðY iðtjÞ � bY iðtjÞÞ2 ð31Þ

where nt is the number of time steps in the simulations

and the tj are the discretization times.
RM is identified from simulations made with a DM,

meaning that RM is built to fit in with DM�s responses.
There are two consequences:

1. First, RM will be as good as the DM used for the

computation of data. In fact, from a coarse DM, only

a coarse RM can be obtained, and from an accurate

DM, you can get an accurate RM.

2. Second, the fact that RM fits in well with DM (i.e.

the value of quadratic criterion Jred) depends on the

order n of RM and on the precision wished by the

user. Starting with n = 1, n is incremented and a

RM is identified for each value of n until the gap

between two successive criterions is very low or until

the mean quadratic error rid
Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J red=qðnt þ 1ÞÞ

p
between RM and DM�s responses is of the order of

magnitude of the precision wanted by the user (cf.

following Section 5 for an application).

Remarks:

1. If the RM is built from measured data instead of

DM�s simulations, iterations of the minimization

algorithm should be stopped when rid
Y reaches the

order of magnitude of measurement errors of data

used for identification.

2. If the RM is going to be used for solving inverse

problems (cf. part II of the paper [18]), it can fit in

with DM with the order of magnitude of the mea-

surement errors of data used for inversion.

3. RM�s order n depends more on the dynamics of the

physical points chosen as outputs than on the num-

ber of chosen points. If the dynamics of the chosen

points are quite different, RM�s order is larger than

if the points have similar dynamics.

4. RM is identified from temperature evolutions of a

number q of chosen physical points that are of inter-

est for the user, hence it is built to simulate the

dynamics of these q points specifically. In fact, the

first dimension of identified output matrix H is

always equal to the number q of chosen points, mean-

ing that RM can simulate only these q points. If other

points are chosen, another RM should be identified

from corresponding temperature data. Of course, it

is possible to build a RM for any q 6 N and

then a priori for the N points of the original

DM, but it could be long in terms of computational

cost as a large amount of data would be used. Usu-

ally, in practical applications, only a few points are

used.

In contrast to linear systems for which aRM identified

from responses to any known input signal will be a priori

valid for any other input signal, nonlinear systems basi-

cally react in a different way according to the excitation

level. Consequently, a RM identified from responses to



Fig. 2. RM identification algorithm.
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a known input signal U1(t) will not necessary adequately

reproduce dynamics of the system when a different input

signal U2(t) is applied. The signal used to generate data

for the RM identification must allow the system to react

in large ranges of temperature levels and frequencies.

That is why we propose to use signals composed of suc-

cessive steps to reach several different steady regimes,

with random values around each steady level in order

to exhibit some frequencies in the system dynamics.

The method for minimizing the squared residues

functional Jred uses optimization techniques. The vectorbY ðtÞ being nonlinear with respect to matrices F and X,
an iterative method of the quasi-Newton class is used

for the identification of components of F and X. bY ðtÞ
being linear with respect to matrix H, components of

H are obtained using linear least squares at each itera-

tion. The identification algorithm requires numerous res-

olutions of nonlinear first order differential equations

(30a,b). The low number n of equations involved, to-

gether with the diagonal aspect of matrix F, ensure very

small computing time for each of these resolutions. The

identification procedure scheme for a given order n is

given in Fig. 2.
5. An example of application

We propose a numerical example to illustrate the

identification method. A 3D system, a cube (0.1m ·
0.1m · 0.1m) shown in Fig. 3, is considered. It is com-

posed of a material whose thermal conductivity depends

linearly on temperature according to the following law:

kðT Þ ¼ 16ð1þ 0:01ðT � 20ÞÞ ð32Þ
where the local temperature T is expressed in �C.
The transient nonlinear energy equation is written:

qCp
oT
ot

¼ divðkðT Þ grad!
T Þ ð33Þ
where T = T(x,y,z, t) and qCp = 4.029 · 106 Jm�3 �C�1.

Associated boundary conditions are written:

�kðT Þ oT
ox

¼ UðtÞ at x ¼ 0 ð34aÞ

�kðT Þ oT
ox

¼ hðT � T aÞ at x ¼ 0:1 ð34bÞ

T ¼ 0 at y ¼ 0 ð34cÞ

kðT Þ oT
oy

¼ 0 at y ¼ 0:1 ð34dÞ

kðT Þ oT
oz

¼ hðT � T aÞ at z ¼ 0 ð34eÞ
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kðT Þ oT
oz

¼ 0 at z ¼ 0:1 ð34fÞ

where Ta = 0 �C is the ambient temperature surrounding

east and bottom faces, and h = 50Wm�2 �C�1 is a con-

vective exchange coefficient.
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Fig. 4. Input signal U(t) used
A possible initial condition is given by the resolution

of Eq. (33) in steady state when boundary conditions

((34a)–(f)) are applied with U(t = 0).

The domain is discretised using the Finite Volumes

Method, with 11 nodes in each direction. Consequently,
 (s)
30 000 36 000 42 000 48 000 54 000

for RM identification.



Table 1

Summary of RMs identification results: mean quadratic error

rid
Y versus RM�s order n

RM�s order n 1 2 3 4 5

ridY (�C) 1.396 0.191 0.035 0.020 0.015
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a DM of order N = 1331, taking the form of Eq. (5a,b),

is built.

In order to illustrate the method, let us consider three

points inside the domain (cf. Fig. 3), the first one located

near the bottom face and the west face submitted to the

applied heat flux density U(t), the second one located at

the centre of the cube and the third one near the top face

and the east face opposed to the heated boundary. We

wish to build a RM describing the thermal behaviour

of these three points. In fact, RM�s outputs are the

points that are interesting for the user for its particular

application. The reader should then note that in Part

II of the paper [18], the RM identified in the present Part

I will be used for solving an inverse problem with three

sensors that are located at the points for which RM has

been built.

In Fig. 4 is shown the signal U(t) used for the RM

identification. nt = 10800 time steps of 5s are used, for

a total of 32403 data for the temperature evolutions of

the three points. Fig. 5 shows the temperature response

at point No. 1 obtained with the DM of order N = 1331.

In Table 1 are summarized the results of the identifica-

tion of RMs of orders n = 1–5, that is, the minimization

of the quadratic criterion Jred (Eq. (31)) for each of these

values of n. For n = 1–3, the mean quadratic error

rid
Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J red=ðqðnt þ 1ÞÞ

p
characterising the RM identifi-
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Fig. 5. Temperature evolution at point No. 1, obtained with DM a
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cation decreases rapidly from 1.4 to 0.035 �C. For

n = 4, the gain in precision is still substantial with

rid
Y ¼ 0:02 �C. Increasing the order to n = 5 gives

rid
Y ¼ 0:015 �C: the identification criterion is slightly bet-

ter but the improvement is not significant. That�s why

the RM of order n = 4 will be used in the following. In

Fig. 5 is also shown the residual between DM�s and

RM�s response at point No. 1 (multiplied by 100 to ease

the reading). Of course, some error peaks corresponding

to steps of the input signal U(t) can be observed, but the

identified RM reproduces adequately the DM thermal

behaviour for the point No. 1 when the system is submit-

ted to the specific input shown in Fig. 4. Similar obser-

vations can be made with the two other points.

In order to validate the identified RM, it is necessary

to test it with input signals U(t) very different of the sig-

nal used for the model identification. Two test examples

are presented. Fig. 6 shows the first signal U(t) which
 (s)
0 000 36 000 42 000 48 000 54 000

s well as RM of order 4 when the input signal used for RM
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contains only increasing and decreasing steps. Fig. 7

shows that temperature responses computed with RM

are quasi perfectly superposed to those obtained using

DM. Fig. 8 shows the corresponding residual between

DM�s and RM�s responses.
The second test function is shown in Fig. 9: the signal

U(t) is more complex, including a sinusoid (whose

amplitude and period are different from those of the sig-

nal used for the identification) and ramps. Again, re-

sponses obtained using RM are in excellent agreement

with those computed with DM (cf. Fig. 10). Corre-

sponding residual is given in Fig. 11.

Computing time has been divided by a factor greater

than 1000:0.15s CPU with RM versus 163s CPU with

DM.

Finally, one should note the importance of nonlinea-

rities in the presented example. In fact, if the linear RM

obtained by zeroing the nonlinear term XZ X(t)) in Eq.

(30a) is used, resulting temperature evolutions are far

from those shown on Figs. 7 and 9, with discrepancies

up to 80 �C in the case of test function No. 2.
6. Conclusion

A new method for identifying low order models of

nonlinear diffusive thermal systems has been proposed.

The structure of the Reduced Model equations is ob-

tained by manipulating equations of a Detailed Model

under State Space Representation when a discretization

of the domain is made using a classical method (finite

elements, finite volumes, finite differences, . . .). The

RM links some chosen temperature outputs in the do-

main to a single thermal input. Matrices of RM equa-

tions are identified through the minimization of a

squared residues functional built with the discrepancy

between responses of the system (in this study, outputs

of a DM) in one hand and outputs of RM on the other

hand, when a specific input signal is applied. The identi-

fication algorithm uses optimization techniques.

Thanks to the adopted state space representation, the

method is independent of geometry and can be applied

to multidimensional systems. RMs work in both steady

and transient regimes.

Although the method has been developed for systems

with thermal conductivity linearly dependent of temper-

ature, it has been underlined that extensions could be

written in the more general hypothesis of thermal con-

ductivity depending on temperature according to a pol-

ynomial law and also to the case of thermal capacity

varying with temperature.

A numerical example of a simple tridimensional

system is presented to illustrate the method, but the

method can be applied to any complex geometry if a

DM can provide the simulations needed to identify

the RM.
The proposed approach for identifying nonlinear

thermal systems seems promising: substantial reduction

of computing time, use of a RM for the resolution of in-

verse problems (first tests have already been successfully

performed [18]), identification of a RM from experimen-

tal data substituted to simulated numerical data.

The extension of the reduction method to problems

involving more than one independent time-varying un-

known is at this time under development, as well as an

extension to Navier–Stokes equations for the identifica-

tion of coupled nonlinear Reduced Models describing a

flow at some specific locations.
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